MACD는 Moving Average Convergence Divergence의 약자로 직역하면 '이동평균선 수렴 확산'이 됩니다. MACD에서 거리를 측정하는
이동평균선들은 널리 사용되고 있는 단순 이동평균선은 아닙니다. MACD에서 측정하는 이동평균선은 '지수 이동평균선' 이라고 하는
이동평균선을 사용하는데 단순 이동평균선은 최근 며칠 동안의 종가의 평균을 그대로 계산한 선이라면,
지수 이동평균선은 최근 데이터에 더 가중치를 둔 일종의 가중 이동평균선입니다.
아래의 비트코인 차트에서 검정색 선이 10일 지수 이동평균선이고, 파란색 선이 10일 단순 이동평균선입니다.
지수 이동평균선은 최근 데이터에 더 큰 가중치를 부여해 계산하기 때문에 단순 이동평균선보다 최신 추세에 민감하다고 볼 수 있습니다.
지수 이동평균선에 대해서는 여기까지만 설명하고, MACD 지표는 단기 이동평균선과 장기 이동평균선 사이의 거리를 측정함으로써
두 선이 멀어지고, 가까워지려 하는 지점을 찾는 지표입니다. 여기서 사용하는 이동평균선이 지수 이동평균선이다 정도 까지만 알아두시면 좋을 것 같습니다. 단기 이동평균선과 장기 이동평균선의 거리가 최대인 지점을 찾으면 그 다음 순간부터는 이 두 이동평균선의 거리가
좁아질 것이라는 것을 생각하면 매매에 도움을 받을 수 있습니다.
차트에 MACD 지표를 추가하게 되면 위 그림과 같이 두 개의 선과 막대그래프가 나오게 됩니다. 두 개의 선 중 파란색 선은 MACD선이고, 주황색 선은 Signal선이라고 부릅니다. 그리고 막대그래프는 MACD 히스토그램이라고 하는데 MACD선과 Signal선 사이의 간격을 한눈에 보기 쉽도록 나타낸 그래프입니다. 이제 MACD선과 Signal선의 계산식을 살펴보겠습니다.
MACD선은 12일 지수 이동평균선에서 26일 지수 이동평균선을 뺀 값으로 결정되며, 이것은 수식 그대로 12일선(단기 이동평균선)과
26일선(장기 이동평균선)사이의 거리를 나타냅니다. MACD가 음수라는 것은 단기선보다 장기선이 더 높이 있다는 것이고, MACD가
양수라는 것은 단기선이 장기선보다 더 높이 있다는 것이 됩니다.
보통은 하락 추세에서 단기선이 장기선보다 더 아래로 내려와 있고, 상승 추세에서 단기선이 장기선보다 더 위로 올라와 있기 때문에 MACD선의 값이 양수이면 상승, MACD선이 음수이면 하락 추세를 가지고 있을 가능성이 높은 것입니다.
Signal선은 MACD선의 값에 9일 지수 이동평균을 구한 수치입니다. 즉 최근 9일 동안의 MACD의 값에 최근 수치들에 가중치를 두어
평균을 계산한 값으로, 단기선과 장기선 사이의 거리가 어떤 추세를 가지고 있는지를 나타내는 선이라고 할 수 있습니다.
MACD선의 값이 양수라면 MACD 수식에서도 알 수 있듯이 단기선이 장기선보다 더 위에 있는 상황인 것입니다. 단기선이 장기선보다 더 위에 있는 상황은 일반적으로 과거보다 현재에 가격 상승을 이뤘을 상황인 것이고, MACD선의 값이 음수라면 MACD 수식에서도 알 수
있듯이 장기선이 단기선보다 더 위에 있는 상황으로, 일반적으로 과거보다 현재에 가격 하락을 이뤘을 상황입니다.
따라서 MACD선의 값이 음에서 양으로 변하는 순간은 하락 추세에서 상승 추세로의 전환을 알리는 신호로 해석할 수 있고
MACD선의 값이 양에서 음으로 변하는 순간은 상승 추세에서 하락 추세로의 전환을 알리는 신호로 해석할 수 있습니다.
이런 추세 전환 신호를 매매 신호로 여겨 매매에 임할 수도 있습니다.
상승 추세 전환 신호에서 매수, 하락 추세 전환 신호에서 매도의 전략을 세울 수 있는데,
이는 추세 전환 신호이기 때문에 결과적으로 보았을 때, 추세가 형성 되고 추세의 중간 지점에서 신호가 생길 수도 있기 때문에
추세의 시작점에서 매매를 하는 것보다는 수익률이 떨어지지만, 추세의 시작점을 잡겠다는 불가능한 도전보다는 훨씬 더 안정적으로
수익을 올릴 수 있습니다.
또한 일반적인 이동평균선 관련 매매 전략인 골든 크로스와 데드 크로스의 매매 신호보다 조금 더 일찍 신호를 준다는 장점이 있습니다.
MACD선과 Signal선의 관계를 살펴봅시다. MACD선의 수치는 단기선과 장기선 사이의 거리이고, Signal선의 수치는 그 거리의 이동
평균값이 됩니다. 따라서 MACD선이 SIgnal선 위에 있다는 것은 단기선과 장기선 사이의 거리가 최근 9일에 비해 멀리 있다는 것이고,
MACD선이 Signal선 아래에 있다는 것은 단기선과 장기선 사이의 거리가 최근 9일에 비해 가깝다는 것을 의미합니다.
이때 이평선 사이의 거리를 좁히고 넓히는 데에는 단기선의 역할이 지배적일 수밖에 없습니다.
왜냐하면 장기선은 움직임이 둔하기 때문에 최근에 큰 시세 변화를 겪었다고 해도 쉽사리 크게 움직이지 않기 때문입니다.
따라서 MACD의 절댓값의 증가는 추세의 가속, MACD의 절댓값의 하락은 추세의 힘이 소진되거나 추세의 전환을 의미하게 됩니다.
이때 Signal선이 평균이라고 하는 기준점을 잡아줌으로써 MACD가 Signal선을 돌파하는 시점을 기준으로 추세의 가속 혹은 추세의 힘이
소진되거나 추세의 전환 신호로 간주하게 됩니다. 이를 요약하면 다음과 같습니다.
위의 요약 내용을 차트를 보며 살펴보겠습니다.
마지막으로 상승 추세시 지표의 고점 추세와 차트의 고점 추세가 다르거나, 하락 추세시 지표의 저점 추세와
차트의 저점 추세가 다른 경우 이것을 지표의 디버전스라고 부르는데, MACD를 이용하여 디버전스를 분석하기도 합니다.
상승 추세에서 차트의 고점은 상승하는데 MACD선의 고점은 상승하지 않는 경우 이를 하락 디버전스라고 부르며,
이는 하락 추세 전환 신호입니다. 또한 하락 추세에서 차트의 저점은 하락하는데 MACD의 저점은 하락하지 않는 경우를
상승 디버전스라고 부르며, 이는 상승 추세 전환 신호로 여겨집니다.
디버전스 분석은 MACD의 경우 비교적 높은 신뢰도를 갖지 않는다고 알려져 있기 때문에 널리 활용되지는 않지만
출현한 디버전스를 굳이 무시할 필요는 없기 때문에 참고하면 도움이 될 것입니다.
출처: 학습자료 모아모아 (티스토리 블로그)
https://08231117.tistory.com/152